Distinguished representations and exceptional poles of the Asai-L-function
نویسندگان
چکیده
منابع مشابه
Distinguished representations and exceptional poles of the Asai-L-function
Let K/F be a quadratic extension of p-adic fields. We show that a generic irreducible representation of GL(n, K) is distinguished if and ony if its Rankin-Selberg Asai L-function has an exceptional pole at zero. We use this result to compute Asai L-functions of ordinary irreducible representations of GL(2, K). In the appendix, we describe supercuspidal dihedral representations of GL(2, K) in te...
متن کاملDistinguished positive regular representations
Let $G$ be a tamely ramified reductive $p$-adic group. We study distinction of a class of irreducible admissible representations of $G$ by the group of fixed points $H$ of an involution of $G$. The representations correspond to $G$-conjugacy classes of pairs $(T,phi)$, where $T$ is a tamely ramified maximal torus of $G$ and $phi$ is a quasicharacter of $T$ whose restriction t...
متن کاملcompactifications and representations of transformation semigroups
this thesis deals essentially (but not from all aspects) with the extension of the notion of semigroup compactification and the construction of a general theory of semitopological nonaffine (affine) transformation semigroup compactifications. it determines those compactification which are universal with respect to some algebric or topological properties. as an application of the theory, it is i...
15 صفحه اولDistinction and Asai L-functions for generic representations of general linear groups over p-adic fields
Let K/F be a quadratic extension of p-adic fields, and n a positive integer. A smooth irreducible representation of the group GL(n, K) is said to be distinguished, if it admits on its space a nonzero GL(n, F )-invariant linear form. In the present work, we classify distinguished generic representations of the group GL(n, K) in terms of inducing quasi-square-integrable representations. This has ...
متن کاملExceptional points and double poles of the S matrix.
Exceptional points and double poles of the S matrix are both characterized by the coalescence of a pair of eigenvalues. In the first case, the coalescence causes a defect of the Hilbert space. In the second case, this is not so as shown in previous papers. Mathematically, the reason for this difference is the biorthogonality of the eigenfunctions of a non-Hermitian operator that is ignored in t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: manuscripta mathematica
سال: 2010
ISSN: 0025-2611,1432-1785
DOI: 10.1007/s00229-009-0327-7